本文目录一览:
- 1、关于一部电影,请看补充。
- 2、宇宙中的星球名称
- 3、一个地球等于多少水星?
- 4、宇宙兵器
- 5、有没有好玩的单机太空游戏,类似于EVE似的
- 6、terragenesis太空殖民地类地行星完成后会不会解锁下一个星系
关于一部电影,请看补充。
◆原 名:The Time Machine
◆译 名:时光机器
◆导 演:Simon Wells
◆编 剧:H.G. Wells
戴维 邓肯(David Duncan)
◆演 员:盖伊 皮尔斯 (Guy Pearce) ...... Alexander Hartdegen
马克 埃迪 (Mark Addy) ...... David Philby
菲丽达 洛 (Phyllida Law) ...... Mrs. Watchit
Laura Kirk ...... Flower Seller
Josh Stamberg ...... Motorist
◆类 型:科幻/冒险/动作
◆片 长:95 分钟
◆上 映:2002年
◆国 家:美国
◆语 言:英语
◆字 幕:中文/英语/西班牙语
◆文 件:1CD (698M)
◆链 接:
◆评 分:5.5/10 (11,366 votes)
◆分 级:英国:PG 阿根廷:13 德国:12 葡萄牙:M/12 澳大利亚:M 西班牙:7 法国:U 挪威:11
-----------------------------------------------------------------
◆视频尺寸:640*272
◆压缩格式:XviD 884k + MP3 128k
-----------------------------------------------------------------
◆简 介:
1895年,纽约,哥伦比亚大学的副教授亚历山大·哈德金博士,人近中年却仍抱有着孩童一般的好奇心和求知欲,满脑子旁人看来稀奇古怪的理论。这些理论从来得不到校长的赏识,总是被看作“不切实际的幻想"而打入冷宫。纵使如此,亚历山大还是决定自行建造一部时间机器来向世界证明--人类完全可以在时空中穿梭旅行。
为了避免冒然改变过去所可能造成的逻辑混乱和时空崩塌,哈德金全力着手飞向未来的计划。整个建造过程都进展得非常顺利,亲手建造的机器终于完美地启动,时间如流水般划过,世界以惊人的速度变化,时间旅程展现出一幅幅奇丽而又壮观的景象。时间机器载着他成功地抵达了第一个目的地--2005年的纽约。
时间机器的降落地点已经不是他出发时的实验室,纽约周遭环境的改变更是让他大吃一惊。公众图书馆变成了彻底的虚拟真人交互式访问系统(保守的评价,这在2002年的今天看来,仍有些过于“科幻")。人们所热衷谈论的,是关于在月亮上建立新殖民地的雄伟计划。受到科学家本能的好奇心趋使,亚历山大迫不及待地动身前往另一个未来--2007年。的确,没有什么比看到人类成功殖民月球更激动人心的了。
谁也没有料到,在未来等待着他的是如此难以想象的险境。人类的殖民计划出了大问题,肉眼就可以察觉天空中的月亮已经变得比过去大得太多。事实上殖民计划给月亮带来不可逆转的伤害,月球的运行轨道正在下降,很快将坠入地球。来自月亮的碎片轰击着纽约的曼哈顿区,人们匆忙逃入建立在地下的防空洞中想躲过这场大灾难……
为了逃离可怕的地球生物浩劫,亚历山大调整他的机器来到年代更加久远的802701年。当然,跨越一个冰河纪的地球早已彻底改变了模样。不过人类顽强的生命力似乎使一部分人熬过了浩劫,生存下来。例如他首先遇到的,和平、友好、温和有礼貌的伊洛(Eloi)人。不过就在亚历山大以为地球的一切已经恢复了正常的时候,他们却又遭遇到穴居地底、近乎于怪兽、以捕猎伊洛人为生的莫洛克(Morlock)人。
为了解救被莫洛克人掳走的伊洛人玛拉(Mara),亚历山大只身犯险,前往寻找莫洛克人的巢穴。在路上他得到了生化机械人沃克斯(Vox)的帮助,来到了被奉为神圣遗迹的纽约地下铁。在这个充满讽刺的地方,亚历山大却发现了隐藏在莫洛克人和伊洛人背后的邪恶秘密!
◆演员表:
杰瑞米·艾恩斯 Jeremy Irons .... Uber-Morlock
盖·皮尔斯 Guy Pearce .... Alexander Hartdegen
马克·艾迪 Mark Addy .... David Philby
Yancey Arias .... Toren
马克思·贝克 Max Baker .... Robber
理查德·盖特罗内 Richard Cetrone .... Hunter Morlock
Jacob Chambers .... Spy Morlock
Michael Chaturantabut .... Eloi
Edward Conna .... Hunter Morlock
Myndy Crist .... Jogger
Craig Davis .... Hunter Morlock
Johnathan Eusebio .... Eloi
Roel Failma .... Eloi
Jeremy Fitzgerald .... Hunter Morlock
Bryan Friday .... Hunter Morlock
◆MPAA:
Rated PG-13 for intense sequences of action violence.
《时间机器》是英国作家黑.格.威尔士最著名的两篇著作之一(另一篇是大家都再熟悉不过的《世界大战》),这两篇作品在当时曾令我沉溺了好久。而其中最使我感兴趣的是时间旅行的奇妙之处:这在当时还引发了一场关于时间旅行的社会问题及伦理的大争论。故事情节同样的引人入胜,充满了惊险刺激和悬疑。
《时间机器》运用了某种近乎恐怖的手法和错综复杂的情节,展示了一个震撼人心的感人故事。时间旅行家是对科学有所藐视的韦尔斯式的英雄(凡尔纳式的英雄比较推崇科学技术),具有极强的能力,却无法改变现实。整个作品给人以某种荒凉的感觉。
数十年来,时间旅行一直处于主流科学的边缘。然而,近几年内,该话题在一些理论物理学家中间已成了个人的研究爱好。这一变化部分是出于娱乐消遣——想象时间旅行可是件趣事。但此项研究也有其严肃的一面。理解因果关系是尝试建立一个统一的物理学理论的关键部分。如果无限制的时间旅行是可能的,那么在原则上,这样一个统一理论的性质可能会受到极为严重的影响。
我们对时间最完善的理解来自Einstein的相对论。在这些理论诞生之前,时间被广泛地认为是绝对的和普遍的,不管人们的物理状态如何,时间对于每个人都一样。在Einstein狭义相对论中,他提出测量两个事件的时间间隔取决于观察者如何运动。至关重要的是,运动状态不同的两名观察者对于同样的两个事件将会体验到不同的持续时间。
经常用“双生子佯谬”描述的那个效应:假定Sally和Sam是双胞胎,Sally搭乘一艘飞船以高速驶向附近的一颗恒星去旅行,然后折返飞回地球,而Sam只呆在家里。对于Sally而言,旅行大约持续了一年,但当她返回到地球并跨出宇宙飞船时,她发现地球上已经过去了10年,现在她的兄弟比她大九岁。尽管他们在同一天出生,可是Sally和Sam是不再具有相同的年龄。这个例子说明了一类有限的时间旅行。实际上,Sally已经跳跃到了九年后的地球的未来。
被称为时间膨胀的效应,总会发生于两名作相对运动的观测者之间。在日常生活中我们不会察觉到奇异的时间挠曲(time wraps),因为只有当运动接近于光速时,这一效应才会变得显著。即使以飞机的速度,在一次典型的旅行中的时间膨胀总计就仅仅几纳秒——还不够完成一次威尔斯式的冒险(此处应该指威尔斯的科幻小说《时间机器》中短暂的时间旅行——译注),不过原子钟有足够的准确度来记录此项变化并证实时间的确被运动延长了。所以旅行到未来是一个已被证明的事实,即使迄今为止它只达到了如此无法令人激动的程度。
建造虫洞型时间机器的三个不太简单的步骤
1.寻找或建立一个虫洞,开辟一个隧道用来连接太空中两个不同的区域。大型虫洞可能天然地存在于外太空中,是宇宙大爆炸的遗留物。若事实并非如此,那我们只好凑合着使用比原子更小的虫洞,它们或者是自然的产物(在我们周围,每一瞬间都有这种小型虫洞诞生和消亡),或者是人造产品(就如此处图中所示,它们由粒子加速器生产出来)。这些更小的虫洞必须被扩大到实用的尺寸,也许要使用那些在宇宙大爆炸不久之后导致空间膨胀的能量场。
2.使虫洞稳定下来。注入利用所谓的Casimir效应由量子产生的负能量,虫洞便允许信号和物体安全地穿越它。负能量会抵制虫洞坍缩为密度无穷大或接近无穷大的一点的趋势。换句话说,它阻止了虫洞演变成黑洞。
3.牵引虫洞。一艘具有高度先进技术的太空船将虫洞的入口互相分离开。一个入口可能被安置在中子星表面,那是一颗拥有强大引力场、极度致密的恒星。强烈的引力使得时间变慢。因为在虫洞的另一个入口处,时间流逝得更快,结果这两个入口不但在空间内而且在时间上都被分离开了。
为了观察真实而显著的时间挠曲,一个人必须跃出通常的经验领域。在大型加速器里,亚原子粒子可以被加速到接近光速的程度。这些粒子中的一部分,例如μ介子,拥有一台内置的时钟,因为它们以确定的半衰期发生衰变;根据Einstein的理论,观测到在加速器里高速运动的μ介子以慢动作衰变。一些宇宙射线也经历了惊人的时间挠曲。这些粒子如此接近于光速运动着,以致依照它们的视角,在几分钟之内便能穿过银河系,纵然在地球的参照系中它们似乎花费了数万年。如果时间膨胀没发生过,那些粒子绝不会在这里出现。
以高速运动是跃向未来的一种方式。引力则是另一种手段。在Einstein的广义相对论中,他预言引力可以减缓时间的流逝。与在地下室相比,钟在顶楼上要走得快一些,在更接近于地心因而也更深入于引力场的情况下,这一现象将愈加显著。类似地,钟在太空里比在地面上走得更快。尽管这一效应微乎其微,但它已被精确的时钟直接测得。的确,在全球定位系统中必须考虑到这些时间挠曲效应。如果他们没有考虑到这一点,海员、出租车司机和巡航导弹将会发现自己偏离出规定轨道有许多公里。
中子星表面的引力是如此强大,以致时间的流逝速度与地球上相比大约减缓了30%。在这样一颗恒星上进行观察,事件看起来就像是快进的录像。黑洞代表了时间翘曲的极致;在该天体的表面,时间相对于地球来说是停滞的。这意味着,倘若你从附近落入黑洞,在你到达其表面所花费的短暂的时间内,广阔的宇宙已经历了无限长的时期。因此,就黑洞外部的宇宙而言,黑洞内部是时间终结的区域。如果一名宇航员可以急速地移动,他能够十分靠近黑洞并且安然无恙地返回——没有人不觉得这是富于幻想的,它的鲁莽也就别提了,至于前景嘛——他可以跃进遥远的未来。
到现在为止,我已经讨论了在时间中朝未来旅行的情况。那么逆行又会怎样呢?这可要成问题得多。1948年,新泽西州普林斯顿高级研究所的Kurt Gabriel提出了爱因斯坦引力场方程的一个描述旋转宇宙的解。在这个宇宙中,一名宇航员可以在太空中旅行来实现回到过去的目的。这是引力影响了光的结果。宇宙的旋转导致光(因而也包括事物之间的因果联系)被拽住并环绕在它的内部,这使得一个处于封闭环内的实物可以在空间的闭环中移动,同时也在时间的闭环中旅行,而任何时候都不会相对邻近的粒子超光速。Gabriel的解释被当作数学上的奇谈而束之高阁——毕竟,没有观测迹象表明宇宙作为整体在旋转。他的计算结果不过是证明了在时间中逆行并不违背相对论。的确,爱因斯坦表示他曾为自己的理论可能在某些情况下允许回到过去的想法而感到困惑。
其他一些允许回到过去的猜想也已被发现。例如,在1974年,Tulane大学的Frank J. Tipler计算了一个巨大的无限长旋转柱体,在它的轴线处,宇航员们能够接近于光速拜访到自己的过去,即拽曳柱面附近的光线形成环状。1991年,普林斯顿大学的J. Richard Gott预言了宇宙弦——宇宙学家设想它的结构是在宇宙大爆炸早期产生的——能产生相似的结果。但是20世纪80年代中期所涌现的最逼真的时间机器剧本,是基于虫洞的概念构想出来的。
在科幻小说中,虫洞有时被称作星门;它们提供一条贯通空间中彼此相距很远的两点之间的捷径。跳过一个假想的虫洞,你可能会在片刻之后出现于银河系的另一端。虫洞自然地符合广义相对论,凭借引力,不仅可以使空间弯曲,而且还能让时间发生扭曲。理论允许连接空间中的两点的可选路径和隧道这样的东西的存在。数学家提出了多重连结的空间形式。正像穿越山底的隧道要比山表面的道路更短一样,虫洞可能也要比贯穿于普通空间的寻常路线来得更短。
卡尔·萨根在其1985年的小说《接触》中,就利用了虫洞作为一个虚构的装置。在萨根的提议下,Kip S. Thorne和他在加州理工学院的同事们着手去考察虫洞是否与已知的物理学一致。他们的出发点是虫洞作为一个与黑洞一样具有可怕引力的物体。但与黑洞不同的是,后者只提供一次没有目的地的单程旅行,而虫洞将同时拥有一个出口和一个入口。
由于虫洞是可穿越的,它必定包含了Thorne所说的奇异物质。实际上,这是某种能产生反重力效果来抵制一个大规模系统因其自身强大的重力而被压入黑洞的自然趋势的物质。反重力,或是万有斥力,能够由负能量或负压力产生。众所周知,负能量状态存在于特定的量子系统中,它表明Thorne的奇异物质并不被物理学定律所禁止,尽管目前尚不清楚,是否能收集到足够多的抗重力材料以稳定一个虫洞。】[参见《负能量,虫洞和时空弯曲行驶》,Lawrence H. Ford 和Thoms A. Roman,《科学美国人》,2000年1月号 ]。
不久Thorne和他的同事们认识到如果稳定的虫洞能够被制造出来,那么它很容易转变为一台时间机器。一名穿越虫洞的宇航员也许不仅能出现在宇宙的某处,而且还会处于某一时期,也就是——在未来或者是过去。
为了使虫洞适合于时间旅行,它其中的一个洞口应被引到一颗中子星那里,并安置在接近中子星表面的地方。恒星的引力会减缓虫洞洞口附近的时间流逝,这使得虫洞两端之间的时间差逐渐积累起来。如果两个端口都放置在空间中合适的地方,那么时间差将保持冻结状态。
假设这一差值是10年。一名宇航员从一个方向穿越虫洞,他将跳到10年后的未来,反之,宇航员若是从另一方向穿越虫洞,他将跳到10年前的过去。第二位宇航员以高速穿过平常的太空,回到出发点,他也许先于出发之前就回到家了。换句话说,空间中的封闭环可能会演变为时间中的环。一个限制是宇航员不能回到首次建立虫洞以前的那段时期。
一项可怕的难题是最初创生的虫洞将会阻碍虫洞型时间机器的制造。也许空间由这么一类结构自然地串连成一体——宇宙大爆炸的遗留物。如果是这样的话,一个超级文明大概能使用一个虫洞。或许,虫洞是在极小尺度上(所谓的普朗克长度,大约是原子核尺度的10-20那么小)天然生成的。原则上,这样一个微小的虫洞可由脉冲能量来稳定,然后再以某种方式膨胀到可以利用的尺寸。
假如工程上的诸多难题都被克服了,时间机器的生产将会打开因果佯谬的潘多拉魔盒。例如,一个时间旅行者到访过去,谋杀了还是一个年轻女孩的母亲。我们如何弄明白这种事情意味着什么?如果这个女孩死了,她就不能成为时间旅行者的母亲。但倘若这名时间旅行者从未出现过,他就不能回到过去并谋杀自己的母亲。
著名的母亲佯谬(有时会用其他的家庭亲属关系来系统地阐述)是由于人们或物体能够在时间中逆行并改变过去时所引发的。一个简化的版本是以弹珠为例。一颗弹珠穿过了虫洞型时间机器,随后便会击中处于更早时候的自身,从而永远阻止它进入虫洞。
佯谬的解决方案源于一个简单的认识:弹珠不能违背逻辑或违反物理学定律行事。它当然不能以阻止自己的方式去穿越虫洞,但没有任何东西会制止弹珠以其他无限多的方式穿过虫洞。
当时间旅行者试图改变过去,这类明显不可能的佯谬就会出现。但那并不阻止某人成为过去的一部分。假定时间旅行者回到过去并从谋杀中拯救了一个年轻女孩,这个女孩长大后成了他的母亲。那么因果环节现在便是自洽的,不再自相矛盾了。因果一致性可能强行限制了时间旅行者所能做的事,但这并不排除时间旅行本身。
即使时间旅行不是严格地自相矛盾,它依然是不可思议的。仔细设想这么一位时间旅行者,他跳跃到一年后,读取了《科学美国人》未来版本上最新的数学定理。他记下了其中的细节,回到自己所处的时代,并把这一定理教授给一名学生,就是这名学生日后为《科学美国人》撰写了文章。这篇文章当然正是那位时间旅行者所读到的。接着问题出现了:关于这则定理的信息来自何处?不是源于时间旅行者,因为他只是个读者,但也不是来自那名学生,后者可是从前者那里学到了定理。信息似乎无缘无故蓦地就出现了。
时间旅行异乎寻常的推论致使一些科学家彻底拒绝这一想法。剑桥大学的史蒂芬·霍金提出一个“年代学保护猜想”,这将宣布因果环的失效。众所周知,由于相对论容许因果环存在,年代学保护需要引入某一其他因素进行调解,以防止旅行到过去的情况发生。这一因素可能是什么呢?一个提议是量子过程会解决这项难题。时间机器的存在将允许粒子循环进入它们的过去。计算结果暗示了随即发生的扰动将会自行增强,从中造成能量逃逸的浪涌可导致虫洞崩溃。
年代学保护仍不过是个猜想而已,因此时间旅行依然保留其可能性。解决事情的一个最终方案必须期待量子力学和引力的成功结合,也许要借助弦理论或它的扩展理论,即所谓的M理论。我们甚至可以想象下一代粒子加速器将能生成比亚原子尺度的虫洞,它们能存在足够长的时间,使得附近的粒子能够执行转瞬即逝的因果环。这要比威尔斯对于时间机器的想象深远得多,它将永远改变我们的物理实在图景。
宇宙中的星球名称
赫尔卡星、海洋星、克洛斯星、火山星、云霄星、双子阿尔法星、双子贝塔星、塞西利亚星、拜伦号、露西欧星、斯诺星、卡酷星、格朗德星
尼古尔星、塔克星、艾迪星、斯科尔星、普雷空间站、哈莫星、推特星、诺可撒斯星、米斯特瑞星、索伦森星、普罗特星、天蛇星
比格星、陨石地带、空间补给站、拓梯星、戴斯星、墨杜萨星、海兹尔星、拉铂尔星、菲尔纳星、般若星
怀特星、麦兹星、格雷斯星、SUN星、果然星、未来星、Y星、异能星、希尔星、泰若星、提尔瑞斯星、神火星
巨石星、艾伦星、巴斯星、莱恩纳斯、幻影星、恶魔星、魔神星、南瓜星、天马星、帕索尔星
创世星、永恒星、棱石星、暗婆罗星、迷幻星云、天魔星、魔灵星
编辑于 2019-12-23
查看全部16个回答
8条评论
帝释天7908
你这听着咋那么熟悉呢!赛尔号?
查看全部8条评论
— 你看完啦,以下内容更有趣 —
宇宙中星球的名称
太阳 月亮 木星 金星 火星 水星 土星 天王星 海王星 冥王星 地球 比邻星 哈勃彗星 天狼星 牛郎星 织女星 谷神星 太阳系外的天体都是有名字的,如果讲比较亮恒星,就是星座名字加希腊字母。 比如“小熊座α星”,就是北极星。所有星座的星星根据亮度,按照希腊字母顺序排序命名,很多都是编号的,没有名字 梅西耶星云星团表 [编辑本段] 编号 NGC 赤经 赤纬 视径 光度 距离 星座 注释 (名称) 2000 2000 (星等) M1 NGC1952 5h 34.5m +22 01' 36x34' 8.4 金牛座 蟹状星云 M2 NGC7089 21h 33.5m - 0 49' 13 6.5 宝瓶座 球状星团 M3 NGC5272 13h 42.5m +28 23' 16 6.4 猎犬座 球状星团 M4 NGC6121 16h 23.6m -26 32' 26 5.9 天蝎座 球状星团 M5 NGC5904 15h 18.6m + 2 05' 17 5.8 巨蛇座 球状星团 M6 NGC6405 17h 40.1m -32 13' 15 4.2 天蝎座 疏散星团 M7 NGC6475 17h 53.9m -34 49' 80 3.3 天蝎座 疏散星团 M8 NGC6523 18h 03.8m -24 23' 90x40 5.8 人马座 弥漫星云 M9 NGC6333 17h 19.2m -18 31' 9 7.9 蛇夫座 球状星团 M10 NGC6254 16h 57.1m -4 06' 15 6.6 蛇夫座 球状星团 M11 NGC6705 18h 51.1m -6 16' 14 5.8 盾牌座 疏散星团 M12 NGC6218 16h 47.2m -1 57' 15 6.6 蛇夫座 球状星团 M13 NGC6205 16h 41.7m +36 28' 17 5.9 武仙座 球状星团 M14 NGC6402 17h 37.6m -3 15' 12 7.6 蛇夫座 球状星团 M15 NGC7078 21h 30.0m +12 10' 12 5.4 飞马座 球状星团 M16 NGC6611 18h 18.8m -13 47' 35 6.0 巨蛇座 弥漫星云 M17 NGC6618 18h 20.8m -16 11' 46x37 7.0 人马座 弥漫星云 M18 NGC6613 18h 19.9m -17 08' 9 6.9 人马座 疏散星团 M19 NGC6273 17h 02.6m -26 16' 14 7.2 蛇夫座 球状星团 M20 NGC6514 18h 02.3m -23 02' 29x27 6.3 人马座 三叶星云 M21 NGC6531 18h 04.6m -22 30' 13 5.9 人马座 疏散星团 M22 NGC6656 18h 36.4m -23 54' 24 5.1 人马座 球状星团 M23 NGC6494 17h 56.8m -19 01' 27 5.5 人马座 疏散星团 M24 NGC6603 18h 18.4m -18 25' 90 4.5 人马座 疏散星团 银河补丁 M25 IC4725 18h 31.6m -19 15' 32 4.6 人马座 疏散星团 M26 NGC6694 18h 45.2m -9 24' 15 8.0 盾牌座 疏散星团 M27 NGC6853 19h 59.6m +22 43' 8x4 8.1 狐狸座 行星状星云 哑铃星云 M28 NGC6626 18h 24.5m -24 52' 11 6.9 人马座 球状星团 M29 NGC6913 20h 23.9m +38 32' 7 6.6 天鹅座 疏散星团 M30 NGC7099 21h 40.4m -23 11' 11 7.5 魔羯座 球状星团 M31 NGC224 0h 42.7m +41 16' 178x63' 3.4 仙女座 旋涡星系仙女星系 M32 NGC221 0h 42.7m +40 52' 8x6 8.2 仙女座 星系 M33 NGC598 1h 33.9m +30 39' 62x39 5.7 三角座 旋涡星系 三角座星系 M34 NGC1039 2h 42.0m +42 47' 35 5.2 英仙座 疏散星团 M35 NGC2168 6h 08.9m +24 20' 28 5.1 双子座 疏散星团 M36 NGC1960 5h 36.1m +34 08` 12 6.0 御夫座 疏散星团 M37 NGC2099 5h 52.4m -32 33' 24 5.6 御夫座 疏散星团 M38 NGC1912 5h 28.7m +35 50' 21 6.4 御夫座 疏散星团 M39 NGC7092 21h 32.2m +48 26' 32 4.6 天鹅座 疏散星团 M40 Winnecke4 12h 22.4m +58 05' — 8.0 大熊座 双星 两颗恒星相距50'' M41 NGC2287 6h 47.0m -20 44' 38 4.5 大犬座 疏散星团 M42 NGC1976 5h 35.4m -5 27` 66X60 4 猎户座 最亮的星云(猎户座大星云) M43 NGC1982 5h 35.6m -5 16' 20X15 9 猎户座 弥漫星云 猎户座大星云东北部 M44 NGC2632 8h 40.1m +19 59' 95 3.1 巨蟹座 疏散星团 蜂巢星团(鬼星团) M45 Mel22 3h 47.0m +24 07' 110 1.2 金牛座 昴星团 M46 NGC2437 7h 41.8m -14 49' 27 6.1 船尾座 疏散星团 M47 NGC2422 7h 36.6m -14 30' 30 4.4 船尾座 疏散星团 M48 NGC2548 8h 13.8m -5 48' 54 5.8 长蛇座 疏散星团 M49 NGC4472 12h 29.8m +8 00' 9x7 8.4 室女座 星系 M50 NGC2323 7h 03.2m +8 20' 16 5.9 麒麟座 疏散星团 M51 5194-5 13h 29.9M +47 12' 11X8 8.1 猎犬座 漩涡星系(猎犬座星系) M52 NGC7654 23h 24.2m +61 35` 13 6.9 仙后座 疏散星团 M53 NGC5024 13h 12.9m +18 10' 13 7.7 后发座 球状星团 M54 NGC6715 18h 55.1M -30 29' 9 7.7 人马座 球状星团 M55 NGC6809 19h 40.0m -30 58' 19 7.0 人马座 球状星团 M56 NGC6779 19h 16.6m +30 11' 7 8.2 天琴座 球状星团 M57 NGC6720 18h 53.6m +33 02' 1.4x1.0 9.0 天琴座 行星状星云 M58 NGC4579 12h 37.7m +11 49' 5x4 9.8 室女座 星系 M59 NGC4621 12h 42.0m +11 39' 5x3 9.8 室女座 椭圆星系 M60 NGC4649 12h 43.7m +11 33' 7x6 8.8 室女座 椭圆星系 M61 NGC4303 12h 21.9m +4 28' 6x6 6.6 室女座 旋涡星系 M62 NGC6266 17h 01.2m +30 07' 14 8.8 蛇夫座 球状星团 M63 NGC5055 13h 15.8m +42 02' 12x8 8.6 猎犬座 旋涡星系 太阳花星系 M64 NGC4826 12h 56.7m +21 41' 9x5 8.5 后发座 旋涡星系 黑眼星系 M65 NGC3623 11h 18.9m +13 05' 10x3 9.3 狮子座 旋涡星系 M66 NGC3627 11h 20.2m +12 59' 9x4 9.0 狮子座 旋涡星系 M67 NGC2682 8h 50.4m +11 49' 30 6.9 巨蟹座 疏散星团 M68 NGC4590 12h 39.5m +26 45' 12 8.2 长蛇座 球状星团 M69 NGC6637 18h 31.4m -32 21' 4 7.7 人马座 球状星团 M70 NGC6681 18h 43.2m -32 18' 8 8.1 人马座 球状星团 M71 NGC6838 19h 53.9m +18 47' 7 8.3 天箭座 球状星团 M72 NGC6981 20h 53.5m -12 32' 6 9.4 宝瓶座 球状星团 M73 NGC6994 20h 59.0m -12 38' 3 8.9 宝瓶座 疏散星团 M74 NGC628 1h 36.7m +15 47' 10x10 9.2 双鱼座 星系 M75 NGC6864 20h 06.1m -21 55' 6 8.6 人马座 球状星团 M76 NGC651 1h 42.4m +51 34' 1 12.2 英仙座 行星状星云 M77 NGC1068 2h 42.7m -00 01' 7x6 8.8 鲸鱼座 星系 M78 NGC2068 5h 46.7m +00 03' 8x6 - 猎户座 弥散星团 M79 NGC1904 5h 24.5m +24 33' 9 8.0 天兔座 球状星团 M80 NGC6093 16h 17.1m +22 59' 9 7.2 天蟹座 球状星团 M81 NGC3031 9h 55.6m +69 04' 26x14 6.9 大熊座 星系 M82 NGC3034 9h 55.8m +69 41' 11x5 8.4 大熊座 星系 M83 NGC5236 13h 37.0m -18 52' 11x10 8.0 长蛇座 星系 M84 NGC4374 12h 25.1m +12 53' 5x4 9.3 室女座 星系 M85 NGC4382 12h 25.4m +18 11' 7x5 9.2 后发座 星系 M86 NGC4406 12h 26.2m +12 57' 7x6 9.2 室女座 星系 M87 NGC4486 12h 30.8m +12 24' 7x7 8.6 室女座 星系 M88 NGC4501 12h 32.0m +14 25' 7x4 9.5 后发座 星系 M89 NGC4552 12h 35.7m +12 33' 4x4 9.8 室女座 星系 M90 NGC4569 12h 36.8m +13 10' 10x5 9.5 室女座 星系 M91 NGC4548 12h 35.4m +14 30' 5x4 10.2 后发座 星系 M92 NGC6341 17h 17.1m +43 08' 11 6.5 武仙座 球状星团 M93 NGC2447 7h 44.6m +23 52' 22 6.2 船尾座 疏散星团 M94 NGC4736 12h 50.9m +41 07' 11x9 8.2 猎犬座 星系 M95 NGC3351 10h 44.0m +11 42' 7x5 9.7 狮子座 星系 M96 NGC3368 10h 46.8m +11 49' 7x5 9.2 狮子座 星系 M97 NGC3587 11h 14.8m +55 01' 3 12.0 大熊座 行星状星云 猫头鹰星云 M98 NGC4192 12h 13.8m +14 54' 10x3 10.1 后发座 星系 M99 NGC4254 12h 18.8m +14 25' 5x5 9.8 后发座 星系 M100 NGC4321 12h 22.9m +15 49' 7x6 9.4 后发座 星系 M101 NGC5457 14h 03.2m +54 21' 27x26 7.7 大熊座 星系 M102 NGC5866 15h 06.5m +55 46' 5x2 10.0 天龙座 星系 车轮星系 M103 NGC581 1h 33.2m +60 42' 6 7.4 仙后座 疏散星团 M104 NGC4594 12h 40.0m -11 37' 8x4 8.3 室女座 星系 草帽星系 M105 NGC3379 10h 47.8m +12 35' 5x4 9.3 狮子座 星系 M106 NGC4258 12h 19.0m +47 18' 18x8 8.3 猎犬座 星系 M107 NGC6171 16h 32.5m -13 03' 10 8.1 蛇夫座 球状星团 M108 NGC3556 11h 11.5m +55 40' 8x3 10.1 大熊座 星系 M109 NGC3992 11h 57.6m +53 23' 8x5 9.8 大熊座 星系 M110 NGC205 0h 40.4m +41 41' 17x10 8.0 仙女座 星系
561赞·34,769浏览2017-11-26
与科幻有关的星球的名字,越多越好
1、塞伯坦星球 塞伯坦,是美日合作开发的《变形金刚》(玩具、动画、影片等系列产品)剧情中变形金刚的母星。 塞伯坦又译作“赛博坦”或“塞伯特恩”,变形金刚种族的母星,美版名为Cybertron,其实体为变形金刚种族的造物神Primus(元始天尊)。 塞伯坦围绕半人马座阿尔法星轨道运行,是一个和地球近邻土星体积近似的巨大金属行星。它由多种不同属性的金属矿石组成,是那些能使自己身体在机器人形态和各种变形形态之间转换的强大机械生命体的故乡。数百万年来,主要派别——汽车和霸天虎。 2、潘多拉星球 潘多拉(Pandora)是电影《阿凡达》中虚构的一颗卫星。学名“半人马阿尔法B-4”,是半人马阿尔法星中的一颗星球,大小和地球差不多。潘多拉并不是一个行星,它其实是一个巨型气体行星的卫星。 3、死星 刘慈欣小说《超新星纪元》中提到的一颗恒星,那颗恒星直径是太阳的二十三倍,质量是太阳的六十七倍,步入晚年期。 4、瓦肯星 瓦肯(Vulcan)一般指的是瓦肯星。瓦肯星是美剧——《星际迷航》系列电视连续剧中宇宙和星际联邦中最重要的智慧种族之一——瓦肯人的母星。 5、致远星 致远星(Reach)是畅销游戏及小说《光晕》(HALO)中人类的近地殖民星球,也是UNSC(联合国太空司令部)的指挥部所在地。因为富含用于制造人类太空战舰装甲的主要材料——A级钛合金的原料金属钛,致远星也是UNSC大型战舰的生产基地。
11赞·10,305浏览2019-09-02
星球名字大全
太多了
8赞·1,388浏览2016-03-13
求各种行星的名字和图片,谢谢
水星 水星 (Mercury ),中国古代称为辰星。是太阳系中的类地行星,也是岩态行星,其主要由石质和铁质构成,密度较高。自转周期很长为58.65天,自转方向和公转方向相同,水星在88个地球日里就能绕太阳一周,平均速度47.89km/s,是太阳系中运动最快的行星。无卫星环绕。它是八大行星中是最小的行星,也是离太阳最近的行星。 金星 金星(Venus)是太阳系中八大行星之一,按离太阳由近及远的次序是第二颗。它是离地球最近的行星。中国古代称之为长庚、启明、太白或太白金星。公转周期是224.71地球日。夜空中亮度仅次于月球,排第二,金星要在日出稍前或者日落稍后才能达到亮度最大。它有时黎明前出现在东方天空,被称为“启明”;有时黄昏后出现在西方天空,被称为“长庚”。 地球 地球是太阳系从内到外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星。赤道半径为6378.2公里,其大小在行星中排列第五位。地球有大气层和磁场,表面的71%被水覆盖,其余部分是陆地,是一个蓝色星球。地球是包括人类在内上百万种生物的家园,也是目前人类所知宇宙中唯一存在生命的天体。地球已有45亿岁,有一颗天然卫星月球围绕着地球以27.32天的周期旋转,而地球自西向东旋转,以近24小时的周期自转并且以一年的周期绕太阳公转。 火星 火星(Mars)是太阳系八大行星之一,是太阳系由内往外数的第四颗行星,属于类地行星,直径约为地球的一半,自转轴倾角、自转周期均与地球相近,公转一周约为地球公转时间的两倍。在西方称为“战神玛尔斯”,中国则称为“荧惑”。橘红色外表是因为地表的赤铁矿(氧化铁)。火星基本上是沙漠行星,地表沙丘、砾石遍布,没有稳定的液态水体。二氧化碳为主的大气既稀薄又寒冷,沙尘悬浮其中,每年常有尘暴发生。火星两极皆有水冰与干冰组成的极冠,会随着季节消长。 木星 木星,为太阳系八大行星之一,距太阳(由近及远)顺序为第五,亦为太阳系体积最大、自转最快的行星。木星已知63颗卫星,木星主要由氢和氦组成,中心温度估计高达30,500℃。古代中国称之岁星,取其绕行天球一周为12年,与地支相同之故。西方语言一般称之朱比特(拉丁语:Jupiter),源自罗马神话中的众神之王、相当于希腊神话中的宙斯。 土星 土星,为太阳系八大行星之一,至太阳距离(由近到远)位于第六、体积则仅次于木星。并与木星、天王星及海王星同属气体(类木)巨星。古代中国亦称之镇星或填星。 土星主要由氢组成,还有少量的氦与微痕元素,内部的核心包括岩石和冰,外围由数层金属氢和气体包覆著。最外层的大气层在外观上通常情况下都是平淡的,虽然有时会有长时间存在的特征出现。土星的风速高达1,800公里/时,明显的比木星上的风快速。土星的行星磁场强度介于地球和更强的木星之间。 土星有一个显著的环系统,主要的成分是冰的微粒和较少数的岩石残骸以及尘土。已经确认的土星的卫星有62颗。其中,土卫六是土星系统中最大和太阳系中第二大的卫星(半径2575KM)(太阳系最大的卫星是木星的木卫三,半径2634KM),比行星中的水星还要大;并且土卫六是唯一拥有明显大气层的卫星。 天王星 天王星是太阳向外的第七颗行星,在太阳系的体积是第三大(比海王星大),质量排名第四(比海王星轻)。他的名称来自古希腊神话中的天空之神乌拉诺斯(Οὐρανός),是克洛诺斯(农神)的父亲,宙斯(朱比特)的祖父。天王星是第一颗在现代发现的行星,虽然它的光度与五颗传统行星一样,亮度是肉眼可见的,但由于较为黯淡而未被古代的观测者发现。威廉·赫歇耳爵士在1781年3月13日宣布他的发现,在太阳系的现代史上首度扩展了已知的界限。这也是第一颗使用望远镜发现的行星。 海王星 海王星(Neptune)是环绕太阳运行的第八颗行星,是围绕太阳公转的第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。海王星的质量大约是地球的17倍,而类似双胞胎的天王星因密度较低,质量大约是地球的14倍。海王星以罗马神话中的尼普顿(Neptunus),因为尼普顿是海神,所以中文译为海王星。天文学的符号,是希腊神话的海神波塞冬使用的三叉戟。 冥王星 冥王星,或被称为134340号小行星,于1930年1月由克莱德·汤博根据美国天文学家洛韦尔的计算发现,并以罗马神话中的冥王普路托(Pluto)命名。它曾经是太阳系九大行星之一,但后来被降格为矮行星。与太阳平均距离59亿千米。直径2300千米,平均密度0.8克/立方厘米,质量1.290×10^22 千克。公转周期约248年,自转周期6.387天。表面温度在-220°c以下,表面可能有一层固态甲烷冰。暂时发现有四颗卫星。自从70多年前被发现的那天起,冥王星便与“争议”二字联系在了一起,一是由于其发现的过程是基于一个错误的理论;二是由于当初将其质量估算错了,误将其纳入到了大行星的行列。1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书,以后也就将错就错了。冥王星轨道最扁,以致最近20年间冥王星离太阳比海王星还近。从发现它到现在,人们只看到它在轨道上走了不到1/4圈,因此过去对其知之甚少。冥王星的质量远比其他行星小,甚至在卫星世界中它也只能排在第七、第八位左右。冥王星的表面温度很低,因而它上面绝大多数物质只能是固态或液态,即其冰幔特别厚,只有氢、氦、氖可能保持气态,如果上面有大气的话也只能由这三种元素组成。 进入21世纪,天文望远镜技术的改进,使人们能够进一步对海王星外天体(trans-Neptunian objects)有更深了解。2002年,被命名为50000 Quaoar(夸欧尔)的小行星被发现,这个新发现的小行星的直径(1280公里)要长于冥王星的直径的一半。2004年,被命名为90377 Sedna(塞德娜)的小行星的最大直径也达到了1800公里,而冥王星的直径也只不过2320公里左右。 2005年7月9日,又一颗新发现的的海王星外天体被宣布正式命名为厄里斯(Eris)。根据厄里斯的亮度和反照率推断,它要比冥王星略大。这是1846年发现海王星之后太阳系中所发现的最大天体。尽管当初并没有官方的共识,它的发现者和众多媒体起初都将之称为“第十大行星”。也有天文学家认为厄里斯的发现为重新考虑冥王星的行星地位提供了有力佐证。 就连冥王星的显著特征——它的卫星和大气,也并不是独一无二的,海王星外天体带中的一些小行星也有自己的卫星。而且厄里斯的天体光谱分析也显示它和冥王星有着相似的地表,此外厄里斯也有一个较大的卫星戴丝诺米娅(Dysnomia)。 “星籍”争议 而冥王星符合上述第三条行星标准。 国际天文学同盟会进一步决议通过冥王星应该归入矮行星(dwarf planet)之列,而且可以作为尚未命名的一类海王星外天体的原形。在此决议之前,人们也提出了不同的行星方案,其中一些甚至提到除了冥王星外也取消火星和水星的行星资格,而另外一些则提议将一些小行星也纳入行星之列。
233赞·12,454浏览2017-09-13
宇宙中所有的星系名称
放开眼界,环顾整个宇宙,浩瀚无垠。宇宙中都有些什么呢? 我们居住的地球是太阳的一个大行星。太阳系中的九个大行星以太阳为中心由内向外排列的顺序是:水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。其中除了水星和金星外,其余七颗行星都有自己的卫星,目前,太阳系中已发现的卫星有近50颗。在太阳系中,还有为数众多的小行星、彗星、流星和陨星等。那么,在太阳系之外,还有什么呢? 在晴朗的夜晚,天空布满了星星,其中,恒星占绝对多数。恒星,就是像太阳一样自己能够发光的天体。我们银河系就有上千亿颗恒星。恒星的体积、光度、质量和密度等都有很大差别。有的星星很亮,光度比太阳大上百倍到一万倍,这种星叫巨星。有的星星,光度比太阳亮上万倍到几百万倍,半径可超过太阳的一千倍,叫做超巨星。还有一种光度低、体积小而密度极大的白色星叫白矮星。 有的白矮星光度小到只有太阳的几万分之一,体积只有地球的几十分之一大,而密度却大到每立方厘米几百公斤、几吨甚至上千吨。目前已经发现的白矮星就有1000多颗,据估计,光我们银河系的白矮星就有100亿颗。1967年,人们发现了一种快速自转的中子星,又叫脉冲星。中子星是恒星中最小的侏儒,大多数中子星的直径只有10公里左右,可是它的密度却大得惊人,每立方厘米达1亿吨,如果用万吨巨轮来拖,中子星上1立方厘米的物质需要1
一个地球等于多少水星?
2个
水星
维基百科,自由的百科全书
跳转到: 导航, 搜索
单击图像以观看高清晰版本
水星的符号
轨道参数
半长径 0.38709893 天文单位
偏心率 0.20563069
倾角 7.00487°
公转周期 87.9693 天
自转周期 58.6462 天
物理参数
质量 3.302×1023 千克
平均半径 2440 ± 1 千米
平均密度 5.427 克/厘米3
表面重力 (赤道) 3.701 米/秒2
逃逸速度 4.435 千米/秒
水星是太阳系九大行星之一,按离太阳由近及远的次序排列为第一颗。
目录
[隐藏]
* 1 概述
* 2 物理性质
o 2.1 大气
o 2.2 温度和日照情况
o 2.3 地形地貌
o 2.4 内部物质组成
o 2.5 公转
o 2.6 自转
o 2.7 磁场
o 2.8 水星上的铁
o 2.9 水星上的冰
* 3 水星探索
o 3.1 早期
o 3.2 美国国家航空航天局
o 3.3 日本和欧洲航天局
o 3.4 成为人类殖民地的可能
* 4 关于水星的科幻
* 5 请参阅
* 6 参考文献
* 7 外部链接
[编辑]
概述
水星在太阳系中是第二小的行星,比月球大1/3,它同时也是最靠近太阳的行星。 水星目视星等范围从 0.4 到 5.5;水星太接近太阳,常常被猛烈的阳光淹没,所以望远镜很少能够仔细观察它。水星没有自然卫星。唯一靠近过水星的卫星是美国探测器水手10号,在1974年—1975年探索水星时,只拍摄到大约45%的表面(见右图)。水星是太阳系中运动最快的行星。
水星的英文名字Mercury来自罗马神墨丘利。符号是上面一个圆形下面一个交叉的短垂线和一个半圆形(Unicode: ☿). 是墨丘利所拿魔杖的形状。在第5世纪,水星实际上被认为成二个不同的行星,这是因为它时常交替地出现在太阳的两侧。当它出现在傍晚时,它被叫做墨丘利;但是当它出现在早晨时,为了纪念太阳神阿波罗,它被称为阿波罗。毕达哥拉斯后来指出他们实际上是相同的一颗行星。中国古代则称水星为“辰星”。
[编辑]
物理性质
[编辑]
大气
水星只有微量的大气。水星的大气极其稀薄。实际上,水星大气中的气体分子与水星表面相撞 的频密程度比它们之间互相相撞要高。出于这些原因,水星应被视为是没有大气的。“大气”主要由氧,钾和钠组成。
组成水星大气的原子不断的被遗失到太空之中,由于钾或钠原子在一个水星日 (一个水星日——在其近日点一日时间的一半)上大约有3小时的平均 "寿命"。散失的大气不断地被一些机制所替换,如被行星引力场俘获的,火山蒸汽,以及两极的冰冠的除气作用。
[编辑]
温度和日照情况
水星表面平均温度约452K,变化范围从90到700K,是温差最大的行星;可以比较一下地球,地球上的度温变化只有11K。(这里只是太阳辐射能量,不考虑“季节”,“天气”) 水星的表面的日照比地球强 8.9 倍,总共辐照度有 9126.6W/m2。
令人惊讶地,在1992年所进行的雷达观察显示,水星的北极有冰。一般相信,这些冰存在于阳光永无法照射到的环形山底部,由于彗星的撞击和/或行星内部的气体冒出表面而积累的。
[编辑]
地形地貌
水星的环形山很类似月球。水星表面最显著的的特证(只包括已经被拍摄过的部分)之一是一个直径达到1350km的冲击性环形山:卡路里盆地,是水星上温度最高的地区。水星地形被标记为多起伏的,原因是几十亿年前水星的核心冷却收缩引起的外壳起皱。大多数的水星表面包括二个不同的年龄层;比较年轻的比较平,或许是因为溶岩浸入了较早地形的结果。除此之外,水星有“显著性”的“周期性膨胀”。
水星的表面很像月球,满布著环形山、大平原、盆地、辐射纹和断崖。1976年,国际天文学联合会开始为水星上的环形山命名。
水星的地形特征列于下:
* 环形山——请参阅水星环形山列表
* 反照率特征 (标识出不同区域的反射情况)
* 大山脉——请参阅水星大山脉列表
* 山脉
* 大平原——请参阅水星平原列表
* 断崖——请参阅水星断崖列表
* 大峡谷——请参阅水星峡谷列表
[编辑]
内部物质组成
这个行星有一个相对大的(即使是与地球相比)的铁质核;水星由大约 70% 的金属和 30% 的硅酸盐组成,以致密度较高。平均密度是 5430kg/m3;略微地小于地球密度,却比金星大。地球高密度产生的原因是地球的质量压缩了地球的体积。水星的质量只有地球的 5.5%——铁核占据了 42% 的行星容积(地核只占 17% ),核的周围是 600km 厚的行星幔。水星的总重量约为30 000亿亿tonnes。
[编辑]
公转
水星的运行轨道是偏心的,半径从 46M 到 70M 变化。围绕太阳的缓慢岁差不能完全地被牛顿经典力学所解释,以致于在一段时间内很多人用设想的另外一个更靠近太阳的行星(有时被称为火神星)来解释这个混乱。这称为“水星近日点进动”。无论如何,爱因斯坦的广义相对论后来提供了一种可以消除这个小误差的解释。
[编辑]
自转
1889年意大利天文学家夏帕里利经过多年观测认为水星自转时间和公转时间都是88天。直到1965年,美国天文学家才测量出了水星自转的精确周期58.646天。
在一些时候,在水星的表面上的一些地方,在同一个水星日里,当一个观测者(在太阳升起时)时观测,可以看见太阳先上升,然后倒退最后落下,然后再一次的上升。这是因为大约四天的近日点周期,水星轨道速度完全地等于它的自转速度,以致于太阳的视运动停止,在近日点时,水星的轨道速度超过自转速度;因此,太阳看起来会逆行性运动,在近日点后的四天, 太阳恢复正常的视运动。
直到1965年使用雷达观测后,观察数据否决了水星对太阳是潮汐固定的的想法:自转使得所有时间里水星保持相同的一面对着太阳。水星轨速振谐为3:2 ,这就是说自转三次的时间是围绕太阳公转两次的时间;水星的轨道离心使这个谐振持稳。最初天文学家认为它有被固定的潮汐是因为水星处于最好的观测位置,它总是在 3:2 谐振中的相同时刻,展现出相同的一面,就如同它完全地被固定住一样。水星的自转比地球缓慢 59 倍。
因为水星的 3:2 的轨速比率, 一个恒星日 (自转的周期) 大约是58.7个地球日,一个太阳日(太阳穿越两次子午线之间的时间)大约是176个地球日。
[编辑]
磁场
不管它的缓慢自转,水星有一个相对强劲的磁気圈,是地球产生的磁场力的 1%。这个磁场以一个方式类似地球的方式被产生,是借着核心金属液体的流动产生的电场;目前的估计水星的核心不足以热到来液化镍-铁合金,但是它应该可以液化一些低熔点的物质例如说硫或锍。也可能水星的磁场是一个现在已经停止的早期的发电机效应产生的残余产品,磁场已经"冻结(保存)"在了固体磁性材料中。
[编辑]
水星上的铁
水星所含有的铁的百分率超过任何其他已知的星系行星。这里有数个的理论被提出来说明水星的高金属性。
一个理论说本来水星有一个和普通球粒状陨石相似的金属—硅酸盐比率. 那时它的质量是目前质量的大约 2.25 倍,但在早期太阳系的历史中的某个时间,一个星子/微星体撞掉了水星的 1/6。影响是水星的地壳 和 地幔 失去了。类似的另外一个理论是一个用来解释地球月亮的形成的,参见巨物影响理论。另一种说,水星可能在所谓太阳星云早期的造型阶段,在太阳爆发出它的能量之前已经稳定。在这个理论中水星那时大约质量是目前的两倍;但因为原恒星收缩,水星的温度到达了大约 2500K 到 3500K 之间;甚至高达 10000K。许多的水星表面的岩石在这种温度下蒸发,形成 "岩石蒸汽",随后,"岩石蒸汽" 被星际风暴带走。第三个理论,类似第二个,认为水星的外壳层是被太阳风长期侵蚀掉了的。
[编辑]
水星上的冰
在1992年的雷达观察中显示水星含有冻结的水冰。这被认为只存在于那永远的阴暗一面的环形山底,被彗星和/或从行星内部喷发出来并堆积在那里。
[编辑]
水星探索
[编辑]
早期
水星最早被闪族人在(西元前三千年)发现,他们叫它 Ubu-idim-gud-ud。最早的详细记录观察数据的是巴比伦人,他们叫它 gu-ad 或 gu-utu. 希腊人给它起了两个古老的名字,当它出现在早晨时叫阿波罗, 当它出现在傍晚叫赫耳墨斯,但是希腊天文学家知道这二个名字表示的是同一个东西。希腊哲学家赫拉克利特甚至认为水星和金星(维纳斯星)是绕太阳公转的而不是地球。水星的观测因为它过于接近太阳而变的非常复杂;在地球可以观测它的唯一时间是在日出或日落时。
[编辑]
美国国家航空航天局
靠近过水星的唯一太空舱是水手10号。最近有一个被美国国家航空航天局批准的项目, 项目被命名为MESSENGER("信使号",是 MErcury Surface, Space ENvironment, GEochemistry, and Ranging 的字母缩写, 意为 "水星表面, 空间环境, 地理化学和全向遥测"), 已在2004年6月送出, 在2011年三月到达水星。
[编辑]
日本和欧洲航天局
日本计划加入欧洲航天局的一个叫做BepiColombo的项目, 这个项目将发射二个环绕水星飞行的飞船, 计划一个给水星做地图, 一个研究它的磁场. 初步的计划中包括的登陆器已经放弃了. 俄国人在2011年-2012年之间用联盟火箭送出他们的飞船, 飞船将在四年后到达水星, 将会绕轨道飞行, 制地图并且研究它的磁场。
[编辑]
成为人类殖民地的可能
在水星南北极的环形山是一个很有可能适合成为地毬外人类殖民地的地方, 因为那里的温度常年恒定(大约-200℃). 这是因为水星微弱的轴倾斜以及因为基本没有大气, 所以从有日光照射的部分的热量很难携带至此,即使水星两极较为浅的环形山底部也总是黑暗的.适当的人类活动将能加热殖民地以达到一个舒适的温度,周围一个相比大部分地毬区域来说较低的环境温度将能使散失的热量更易处理.
[编辑]
关于水星的科幻
水星是科幻小说作者感兴趣的题材. 主题主要包括暴露在太阳辐射下的危险;停留在水星缓慢移动的明暗界线(白天与夜晚之间的界线)上被过度辐射所伤害的可能和独裁政府(可能因为水星表面温度很高的缘故)
* Eric Rucker Eddison's series of fantasy novels starting with The Worm Ouroboros (1922) is set on Mercury, but the name is used purely for its exotic value, without regard to facts known about it at the time.
* H. P. Lovecraft's The Shadow Out of Time briefly mentions the planet: "Later, as the Earth's span closed, the transferred minds [of the Great Race of Yith] would again migrate through time and space —to another stopping place in the bodies of the bulbous vegetable entities of Mercury."
* Only a little more realistic is Kurt Vonnegut's, novel The Sirens of Titan (1959), in which mindless creatures called symphoniums inhabit the caves of Mercury.
* Isaac Asimov's short story 'Runaround' in the collection I, Robot (1950) takes place on Mercury and involves a robot specially designed to cope with the intense solar radiation on the planet.
* Asimov's juvenile novel Lucky Starr and the Big Sun of Mercury (1956) also takes place there.
* A short story by Asimov, 'The Dying Night', is a murder mystery in which astronomers from Mercury, the Moon, and a fictitious space station are implicated in a murder. The dynamics and living conditions of each of these locations is key to discovering which astronomer is guilty.
* Arthur C. Clarke's Islands in the Sky (1952) includes a description of a terrifying creature that lives on what was then believed to be the permanently dark nightside with only occasional visits to the twilight zone.
* In Arthur C. Clarke's novel Rendezvous with Rama (1973), Mercury is ruled by a hot-tempered government of metal miners that tries to destroy the alien spacecraft Rama. The novel shares its background of a colonised Solar System with several others, especially Imperial Earth.
* In several of the novels and short stories of Kim Stanley Robinson, especially 'Mercurial' in The Planet on the Table (1986) and Blue Mars (1996), Mercury is the home of a vast city called Terminator. The city rolls around the planet's equator on tracks keeping pace with the planet's rotation, so that the Sun never rises fully above the horizon and the city can avoid the dangerous solar radiation; the motive power comes from solar heat expanding the rails on the day side. The city is ruled by an autocratic dictator called the Lion of Mercury.
* Alan E. Nourse's short story Brightside Crossing is a narrative of survivor of one such attempt which had become the ultimate sporting feat.
[编辑]
请参阅
* 水星凌日
[编辑]
参考文献
* Discovering the Essential Universe by Neil F. Comins (2001)
[编辑]
外部链接
* 'BepiColumbo', ESA's Mercury Mission
* 'Messenger', NASA's Mercury Mission
* SolarViews.Com
太阳系
Image:Solar Planets.jpg
太阳 | 水星·金星·地球·火星·木星·土星·天王星·海王星·冥王星
太阳系天体列表
卫星 / 小行星:小行星带·柯伊伯带·奥尔特云·彗星·恒星距离列表
取自""
宇宙兵器
MS 的全名是“Mobile Suit”,是 Mobile Space Utility Instrument Tactical--–泛用战术型宇宙兵器的缩写,在宇宙世纪中通常简称为“ MS”,是一种平均高度为18公尺 、拥有武装、密闭型驾驶仓且由人操纵的人型战斗用机器。
U.C.0073 年,为了对地球联邦政府进行大规模攻击的吉翁公国 , 成功地制作出第一台MS实验机MS-01 ,总计历经4台的实验机制作经验后,U.C.0075 年MS-05萨克Ⅰ正式开始量产。而地球联邦政府则迟至 U.C.0078 年才开始进行MS的研发,整整落后了吉翁公国3年以上。
还想更了解你所拥有的MS吗?还想知道有什麼样的梦幻MS等你操纵吗?我们提供第一手的MS情报给您!快选择你所想认识的MS种类吧!
铜弹
机体名称:RX-78-2 高达
登场作品:机动战士高达
阵营类别:地球联邦军
机组特性:泛用型
武器配备:光剑、光束来福枪
联邦军 V 作战计划诞生的 RX 系列 MS 机种之一,主要设计作为格斗用途。不过所装备的光束来复枪,是与巡洋舰用的 MEGA 粒子炮具有相同等级威力的武器。采用了质轻高钢性的月神钛合金,加上泛用型与高出力的特点,使得高达拥有极佳的机体耐久力与回避性,虽然要耗费的补给点数跟搭载量较高,却是玩家绝对可以信赖与投资的强力机种。
RX-78-2 高达 性能诸元
高: 18.0m 本体重量: 43.4t 出力: 1380kw 装甲:月神钛合金
机体名称: RX-77钢加农
登场作品: 机动战士高达
阵营类别: 地球联邦
机组特性: 凡用型
武器配备: 光束来福枪、240mm 加农炮
联邦军V作战计划诞生的RX系列MS机种之一,主要设计作为中距离支援用途。同样采用了月神钛合金来制造,拥有相同的引擎出力。不过由于并未像RX-78-2高达装备盾牌,因此采用较厚的装甲,而导致机动性略差。不过由于中距离的射击火力强大,可以用于掩护友军,是不可或缺的必要机种。
RX-77 钢加农 性能储元
高: 17.5m 本体重量: 51.0t 出力: 1380kw 装甲:月神钛合金
机体名称: RX-75 钢坦克
登场作品: 机动战士高达
阵营类别: 地球联邦
机组特性: 凡用型
武器配备: 120mm 加农炮、波普飞弹
联邦军在一年战争尚未开战前,将次世代战车开发计划与RX系列计划统合后,所诞生联邦军最初的 MS机种,主要设计作为长距离攻击用途。钢坦克的特征是上半身人型、下半身为战车,同样采用了质轻高钢性的月神钛合金,用以补足出力的不足。由于钢坦克装备有120mm低后座力加农炮,射程高达260公里,因此在地面战时是非常强大的火力来源。
RX-75 钢坦克 性能储元
高: 15.0m 本体重量: 56.0t 出力: 878kw 装甲:月神钛合金
机体名称: 61 式战车
登场作品: 机动战士高达
阵营类别: 地球联邦
机组特性: 陆战用
武器配备: 150mm 加农炮
地球联邦军制式战车,UC.0061年正式服役,因此名为61式战车。在一年大战初期,是地球联邦军主要的陆地用兵器,虽是旧世代的战车,但仍能跟吉翁公国的马杰拉战车相抗衡。不过当面对吉翁的萨MS,就毫无招架之力。唯一可取之处,就是能够以数量取胜。
机体名称: FF-S3 剑鱼战机
登场作品: 机动战士高达
阵营类别: 地球联邦
机组特性: 万能
武器配备: 火神炮、飞弹
地球联邦军在UC.0070年代开发服役的主力战斗机,拥有只要变更装备即可适应于不同地形的设计,属于宇宙、大气圈两用战斗机。剑鱼战机拥有极高的机动力,是联邦军少数可以跟吉翁MS对抗的战斗机,在游戏初期是联邦军的主力机种。
蕯克
机体名称: MS-05 萨克 Ⅰ
登场作品: 机动战士高达
阵营类别: 吉翁公国
机组特性: 凡用型
武器配备: 电热斧、萨克机关枪
吉翁公国军最早完成的并投入实战的MS机种,主要被利用于:驾驶员训练、战技研究、游击战演习以及工程等用途。在一年战争开战后, MS-05萨克Ⅰ则转为后方补给作业用途。搭载量低、补给点数低加上凡用的特点,在游戏初期属于不可或缺的机种。
MS-05 萨克 Ⅰ 性能储元
高: 17.5m 本体重量: 50.3t 出力: 899kw 装甲:超高张力钢
机体名称: 马杰拉战出车
登场作品: 机动战士高达
阵营类别: 吉翁公国
机组特性: 陆战用
武器配备: 3连发火神炮、 MT 炮
吉翁公国为了进行地球侵略作战,而开发的地面用战车。战车可以上下分离,下半部为"车体",上半部为具有飞行能力的炮塔“马杰拉战机”,搭载175mm的无后座力炮,简称MT炮。马杰拉战车整体性能优于联邦的61式战车,在战争初期,十分适合与萨克搭配编组出击,担任后方支援的任务。
机体名称: 托普战机
登场作品: 机动战士高达
阵营类别: 吉翁公国
机组特性: 大气圈飞行
武器配备: 机关炮、飞弹发射器
由于吉翁公国为太空殖民地国家,没有“空军”的概念,因此当进行地球侵略作战时,必须要有能够确保空优的武力。因此利用MS的技术,开发出拥有高机动力的托普战机,吉翁地球北美军司令官卡尔马.萨比亦拥有专用的托普战机。在游戏中,托普战机极适合担任护卫舰的工作。
托普战机 性能储元
高:9.2m 本体重量: 5.2t
机体名称: MS-07古夫
登场作品: 机动战士高达
阵营类别: 吉翁公国
机组特性: 陆战用
武器配备: 电热鞭、H型机关炮
吉翁公国军将陆战型萨克Ⅱ经过大幅修改,而诞生的陆战专用MS,并且装备了盾牌,是与萨克Ⅱ不同之处。古夫不仅对于装甲部分进行强化,机动力也大幅度的提升,并且配备固定于机体上的攻击武装,尤其独特的电热鞭,在一对一的MS格斗战当中,更能突显古夫的强大优势,是吉翁地面战中的主力机种之一。
MS-07 古夫 性能储元
高:18.2m 本体重量: 58.5t 出力: 1034kw 装甲:超高张力钢
免责声明:天使在线刊载此文不代表同意其说法或描述,仅为提供更多参考
有没有好玩的单机太空游戏,类似于EVE似的
远行星号0.75a
星际公民
奥西里斯:新黎明v0.1.111
超越
Endless Space 2
星舰起源
星际战士:起源
The Last Journey
星球流浪者v0.5.1
Planet Nomads
艾文殖民地完整版
帝国霸业:银河生存v5.5.0
异星迷航欧米茄版
地狱之徒
缺氧BuildCL#207683
失落的星球2中文版
缺氧BuildCL#207380
质量效应:仙女座汉化版
死亡空间2steam版
质量效应:仙女座完整版
额滴土豆!我们上天了?!steam版
缺氧BuildCL#206776
缺氧alpha版
异星迷航steam版
terragenesis太空殖民地类地行星完成后会不会解锁下一个星系
这个游戏里其他都要付费的,不过很好玩,类地行星也可以改造,殖民并地球化变为天堂,有火星,金星等星球